算法-爬楼梯

题目

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:
1
2
3
4
5
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
1
2
3
4
5
6
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

解答

用 f(x)f(x) 表示爬到第 xx 级台阶的方案数,考虑最后一步可能跨了一级台阶,也可能跨了两级台阶,所以我们可以列出如下式子:
f(x) = f(x - 1) + f(x - 2)
它意味着爬到第 xx 级台阶的方案数是爬到第 x - 1级台阶的方案数和爬到第 x - 2x级台阶的方案数的和。很好理解,因为每次只能爬 11 级或 22 级,所以 f(x)只能从 f(x - 1) 和 f(x - 2)转移过来,而这里要统计方案总数,我们就需要对这两项的贡献求和。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/**
* @param {number} n
* @return {number}
*/
var climbStairs = function(n) {
let p = 0, q = 0, r = 1;
for (let i = 1; i <= n; ++i) {
p = q;
q = r;
r = p + q;
}
return r;
};

//递归写法

/**
* @param {number} n
* @return {number}
*/
var climbStairs = function(n) {
//实现f(x)= f(x-1)+f(x-2);
// 优化效率,可以记住已算过的数据,直接返回;
if(n == 1){
return 1;
}else if(n == 2 ){
return 2;
}else{
return climbStairs(n-1)+climbStairs(n-2);
}
};

复杂度分析

时间复杂度:循环执行 n 次,每次花费常数的时间代价,故渐进时间复杂度为 O(n)。
空间复杂度:这里只用了常数个变量作为辅助空间,故渐进空间复杂度为 O(1)。