彻底搞懂nodejs事件循环

nodejs是单线程执行的,同时它又是基于事件驱动的非阻塞IO编程模型。这就使得我们不用等待异步操作结果返回,就可以继续往下执行代码。当异步事件触发之后,就会通知主线程,主线程执行相应事件的回调。

以上是众所周知的内容。今天我们从源码入手,分析一下nodejs的事件循环机制。

nodejs架构

首先,我们先看下nodejs架构,下图所示:


如上图所示,nodejs自上而下分为

  • 用户代码 ( js 代码 )

用户代码即我们编写的应用程序代码、npm包、nodejs内置的js模块等,我们日常工作中的大部分时间都是编写这个层面的代码。

  • binding代码或者三方插件(js 或 C/C++ 代码)

胶水代码,能够让js调用C/C++的代码。可以将其理解为一个桥,桥这头是js,桥那头是C/C++,通过这个桥可以让js调用C/C++。
在nodejs里,胶水代码的主要作用是把nodejs底层实现的C/C++库暴露给js环境。
三方插件是我们自己实现的C/C++库,同时需要我们自己实现胶水代码,将js和C/C++进行桥接。

  • 底层库

nodejs的依赖库,包括大名鼎鼎的V8、libuv。
V8: 我们都知道,是google开发的一套高效javascript运行时,nodejs能够高效执行 js 代码的很大原因主要在它。
libuv:是用C语言实现的一套异步功能库,nodejs高效的异步编程模型很大程度上归功于libuv的实现,而libuv则是我们今天重点要分析的。
还有一些其他的依赖库
http-parser:负责解析http响应
openssl:加解密
c-ares:dns解析
npm:nodejs包管理器

关于nodejs不再过多介绍,大家可以自行查阅学习,接下来我们重点要分析的就是libuv。

libuv 架构

我们知道,nodejs实现异步机制的核心便是libuv,libuv承担着nodejs与文件、网络等异步任务的沟通桥梁,下面这张图让我们对libuv有个大概的印象:

这是libuv官网的一张图,很明显,nodejs的网络I/O、文件I/O、DNS操作、还有一些用户代码都是在 libuv 工作的。
既然谈到了异步,那么我们首先归纳下nodejs里的异步事件:

  • 非I/O:

    • 定时器(setTimeout,setInterval)
    • microtask(promise)
    • process.nextTick
    • setImmediate
    • DNS.lookup
  • I/O:

    • 网络I/O
    • 文件I/O
    • 一些DNS操作

网络I/O

对于网络I/O,各个平台的实现机制不一样,linux 是 epoll 模型,类 unix 是 kquene 、windows 下是高效的 IOCP 完成端口、SunOs 是 event ports,libuv 对这几种网络I/O模型进行了封装。

文件I/O、异步DNS操作

libuv内部还维护着一个默认4个线程的线程池,这些线程负责执行文件I/O操作、DNS操作、用户异步代码。当 js 层传递给 libuv 一个操作任务时,libuv 会把这个任务加到队列中。之后分两种情况:

  • 1、线程池中的线程都被占用的时候,队列中任务就要进行排队等待空闲线程。
  • 2、线程池中有可用线程时,从队列中取出这个任务执行,执行完毕后,线程归还到线程池,等待下个任务。同时以事件的方式通知event-loop,event-loop接收到事件执行该事件注册的回调函数。

当然,如果觉得4个线程不够用,可以在nodejs启动时,设置环境变量UV_THREADPOOL_SIZE来调整,出于系统性能考虑,libuv 规定可设置线程数不能超过128个。

nodejs源码

先简要介绍下nodejs的启动过程:

  • 1、调用platformInit方法 ,初始化 nodejs 的运行环境。
  • 2、调用 performance_node_start 方法,对 nodejs 进行性能统计。
  • 3、openssl设置的判断。
  • 4、调用v8_platform.Initialize,初始化 libuv 线程池。
  • 5、调用 V8::Initialize,初始化 V8 环境。
  • 6、创建一个nodejs运行实例。
  • 7、启动上一步创建好的实例。
  • 8、开始执行js文件,同步代码执行完毕后,进入事件循环。
  • 9、在没有任何可监听的事件时,销毁 nodejs 实例,程序执行完毕。

以上就是 nodejs 执行一个js文件的全过程。接下来着重介绍第八个步骤,事件循环。

我们看几处关键源码:

  • 1、core.c,事件循环运行的核心文件。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
int uv_run(uv_loop_t* loop, uv_run_mode mode) {
int timeout;
int r;
int ran_pending;
//判断事件循环是否存活。
r = uv__loop_alive(loop);
//如果没有存活,更新时间戳
if (!r)
uv__update_time(loop);
//如果事件循环存活,并且事件循环没有停止。
while (r != 0 && loop->stop_flag == 0) {
//更新当前时间戳
uv__update_time(loop);
//执行 timers 队列
uv__run_timers(loop);
//执行由于上个循环未执行完,并被延迟到这个循环的I/O 回调。
ran_pending = uv__run_pending(loop);
//内部调用,用户不care,忽略
uv__run_idle(loop);
//内部调用,用户不care,忽略
uv__run_prepare(loop);

timeout = 0;
if ((mode == UV_RUN_ONCE && !ran_pending) || mode == UV_RUN_DEFAULT)
//计算距离下一个timer到来的时间差。
timeout = uv_backend_timeout(loop);
//进入 轮询 阶段,该阶段轮询I/O事件,有则执行,无则阻塞,直到超出timeout的时间。
uv__io_poll(loop, timeout);
//进入check阶段,主要执行 setImmediate 回调。
uv__run_check(loop);
//进行close阶段,主要执行 **关闭** 事件
uv__run_closing_handles(loop);

if (mode == UV_RUN_ONCE) {

//更新当前时间戳
uv__update_time(loop);
//再次执行timers回调。
uv__run_timers(loop);
}
//判断当前事件循环是否存活。
r = uv__loop_alive(loop);
if (mode == UV_RUN_ONCE || mode == UV_RUN_NOWAIT)
break;
}

/* The if statement lets gcc compile it to a conditional store. Avoids * dirtying a cache line. */
if (loop->stop_flag != 0)
loop->stop_flag = 0;

return r;
}
  • 2、timers 阶段,源码文件:timers.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
void uv__run_timers(uv_loop_t* loop) {
struct heap_node* heap_node;
uv_timer_t* handle;

for (;;) {
//取出定时器堆中超时时间最近的定时器句柄
heap_node = heap_min((struct heap*) &loop->timer_heap);
if (heap_node == NULL)
break;

handle = container_of(heap_node, uv_timer_t, heap_node);
// 判断最近的一个定时器句柄的超时时间是否大于当前时间,如果大于当前时间,说明还未超时,跳出循环。
if (handle->timeout > loop->time)
break;
// 停止最近的定时器句柄
uv_timer_stop(handle);
// 判断定时器句柄类型是否是repeat类型,如果是,重新创建一个定时器句柄。
uv_timer_again(handle);
//执行定时器句柄绑定的回调函数
handle->timer_cb(handle);
}
}
  • 3、 轮询阶段 源码,源码文件:kquene.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
void uv__io_poll(uv_loop_t* loop, int timeout) {
/*一连串的变量初始化*/
//判断是否有事件发生
if (loop->nfds == 0) {
//判断观察者队列是否为空,如果为空,则返回
assert(QUEUE_EMPTY(&loop->watcher_queue));
return;
}

nevents = 0;
// 观察者队列不为空
while (!QUEUE_EMPTY(&loop->watcher_queue)) {
/* 取出队列头的观察者对象 取出观察者对象感兴趣的事件并监听。 */
....省略一些代码
w->events = w->pevents;
}

assert(timeout >= -1);
//如果有超时时间,将当前时间赋给base变量
base = loop->time;
// 本轮执行监听事件的最大数量
count = 48; /* Benchmarks suggest this gives the best throughput. */
//进入监听循环
for (;; nevents = 0) {
// 有超时时间的话,初始化spec
if (timeout != -1) {
spec.tv_sec = timeout / 1000;
spec.tv_nsec = (timeout % 1000) * 1000000;
}

if (pset != NULL)
pthread_sigmask(SIG_BLOCK, pset, NULL);
// 监听内核事件,当有事件到来时,即返回事件的数量。
// timeout 为监听的超时时间,超时时间一到即返回。
// 我们知道,timeout是传进来得下一个timers到来的时间差,所以,在timeout时间内,event-loop会一直阻塞在此处,直到超时时间到来或者有内核事件触发。
nfds = kevent(loop->backend_fd,
events,
nevents,
events,
ARRAY_SIZE(events),
timeout == -1 ? NULL : &spec);

if (pset != NULL)
pthread_sigmask(SIG_UNBLOCK, pset, NULL);

/* Update loop->time unconditionally. It's tempting to skip the update when * timeout == 0 (i.e. non-blocking poll) but there is no guarantee that the * operating system didn't reschedule our process while in the syscall. */
SAVE_ERRNO(uv__update_time(loop));
//如果内核没有监听到可用事件,且本次监听有超时时间,则返回。
if (nfds == 0) {
assert(timeout != -1);
return;
}

if (nfds == -1) {
if (errno != EINTR)
abort();

if (timeout == 0)
return;

if (timeout == -1)
continue;

/* Interrupted by a signal. Update timeout and poll again. */
goto update_timeout;
}

。。。
//判断事件循环的观察者队列是否为空
assert(loop->watchers != NULL);
loop->watchers[loop->nwatchers] = (void*) events;
loop->watchers[loop->nwatchers + 1] = (void*) (uintptr_t) nfds;
// 循环处理内核返回的事件,执行事件绑定的回调函数
for (i = 0; i < nfds; i++) {
。。。。
}

}

参考 前端进阶面试题详细解答

uv__io_poll阶段源码最长,逻辑最为复杂,可以做个概括,如下:
当js层代码注册的事件回调都没有返回的时候,事件循环会阻塞在poll阶段。看到这里,你可能会想了,会永远阻塞在此处吗?

1、首先呢,在poll阶段执行的时候,会传入一个timeout超时时间,该超时时间就是poll阶段的最大阻塞时间。
2、其次呢,在poll阶段,timeout时间未到的时候,如果有事件返回,就执行该事件注册的回调函数。timeout超时时间到了,则退出poll阶段,执行下一个阶段。

所以,我们不用担心事件循环会永远阻塞在poll阶段。

以上就是事件循环的两个核心阶段。限于篇幅,timers阶段的其他源码和setImmediateprocess.nextTick的涉及到的源码就不罗列了,感兴趣的童鞋可以看下源码。

最后,总结出事件循环的原理如下,以上你可以不care,记住下面的总结就好了。

事件循环原理

  • node 的初始化

    • 初始化 node 环境。
    • 执行输入代码。
    • 执行 process.nextTick 回调。
    • 执行 microtasks。
  • 进入 event-loop

    • 进入 timers 阶段

      • 检查 timer 队列是否有到期的 timer 回调,如果有,将到期的 timer 回调按照 timerId 升序执行。
      • 检查是否有 process.nextTick 任务,如果有,全部执行。
      • 检查是否有microtask,如果有,全部执行。
      • 退出该阶段。
    • 进入IO callbacks阶段。

      • 检查是否有 pending 的 I/O 回调。如果有,执行回调。如果没有,退出该阶段。
      • 检查是否有 process.nextTick 任务,如果有,全部执行。
      • 检查是否有microtask,如果有,全部执行。
      • 退出该阶段。
    • 进入 idle,prepare 阶段:

      • 这两个阶段与我们编程关系不大,暂且按下不表。
    • 进入 poll 阶段

      • 首先检查是否存在尚未完成的回调,如果存在,那么分两种情况。

        • 第一种情况:

          • 如果有可用回调(可用回调包含到期的定时器还有一些IO事件等),执行所有可用回调。
          • 检查是否有 process.nextTick 回调,如果有,全部执行。
          • 检查是否有 microtaks,如果有,全部执行。
          • 退出该阶段。
        • 第二种情况:

          • 如果没有可用回调。
          • 检查是否有 immediate 回调,如果有,退出 poll 阶段。如果没有,阻塞在此阶段,等待新的事件通知。
      • 如果不存在尚未完成的回调,退出poll阶段。

    • 进入 check 阶段。

      • 如果有immediate回调,则执行所有immediate回调。
      • 检查是否有 process.nextTick 回调,如果有,全部执行。
      • 检查是否有 microtaks,如果有,全部执行。
      • 退出 check 阶段
    • 进入 closing 阶段。

      • 如果有immediate回调,则执行所有immediate回调。
      • 检查是否有 process.nextTick 回调,如果有,全部执行。
      • 检查是否有 microtaks,如果有,全部执行。
      • 退出 closing 阶段
    • 检查是否有活跃的 handles(定时器、IO等事件句柄)。

      • 如果有,继续下一轮循环。
      • 如果没有,结束事件循环,退出程序。

细心的童鞋可以发现,在事件循环的每一个子阶段退出之前都会按顺序执行如下过程:

  • 检查是否有 process.nextTick 回调,如果有,全部执行。
  • 检查是否有 microtaks,如果有,全部执行。
  • 退出当前阶段。

记住这个规律哦。